cisco

Общие принципы проектирования классической ЛВС (I)

Network Design

Hierarchical design

Main design options

L2/L3 access options

+ L3 access – why?

Access layer attributes

Distribution layer attributes

+ simplified design

Core layer attributes

Summary

Cisco Validated Designs

TIP

...provide a framework for design and deployment guidance based on common use cases.

Solution Design Guides + Prescriptive Deployment Guides

Design Zone: cisco.com/go/cvd/campus Cisco Community: https://cs.co/en-cvds

LAN design principles

Hierarchical network design

High availability using modularity, hierarchy, and structure

- Each layer in **hierarchy** has a specific role
- Modular topology—building blocks
- Modularity makes it easy to grow, understand, and troubleshoot
- Structure creates small fault domains and predictable network behavior—clear demarcations and isolation
- Promotes load balancing and resilience
- Promotes deterministic traffic patterns
- Incorporates balance of both Layer 2 and Layer 3 technology, leveraging the strength of both
- Utilizes Layer 3 routing for load balancing, fast convergence, scalability, and control

© 2021 Cisco and/or its affiliates. All rights reserved. Cisco Public

5

Hierarchical network design: Campus wired LAN

Core

Connectivity, availability and scalability

Distribution

- Aggregation for wiring and traffic flows
- Policy and network control point (FHRP, L3 summarization)

Access

- Physical Ethernet wired 10/100/1000(802.3z)/mGig(802.3bz);
 802.3af(PoE), 802.3at(PoE+), and Cisco Universal POE (UPOE)
- Policy enforcement security: 802.1x, port security, DAI, IPSG, DHCP snooping; identification: CDP/LLDP; QoS: policing, marking, queuing
- Traffic control IGMP snooping, broadcast control

Campus wired LAN design

Option 1: Traditional multilayer campus (BRKCRS-2031)

Logical topology-L3:

core/dist.

L2:

dist./acc.

Physical topology: 2 core 2 dist./acc.

- Common design since the 1990's
- Complex configurations (prone to human error) related to spanning-tree, load balancing, unicast and multicast routing
- Requires heavy performance tuning resulting from reliance on FHRPs (HSRP, VRRP, GLBP)

Survives device and link failures	~
Easy mitigation of Layer 2 looping concerns	
Rapid detection/recovery from failures	
Layer 2 across all access blocks within distribution	~
Device-level CLI configuration simplicity	
Automated network and policy provisioning included	

© 2021 Cisco and/or its affiliates. All rights reserved. Cisco Public

Transforming multilayer campus

Before: Layer 3 distribution with Layer 2 access

Simplification with routed access design

After: Layer 3 distribution with Layer 3 access

- Move the Layer 2 / 3 demarcation to the network edge
- Leverages Layer 2 only on the access ports, but builds a Layer 2 loop-free network
- Design Motivations Simplified control plane, ease of troubleshooting, highest availability

© 2021 Cisco and/or its affiliates. All rights reserved. Cisco Public

Routed access advantages

Simplified control plane

- Simplified Control Plane
 - No STP feature placement (root bridge, loopguard, ...)
 - No default gateway redundancy setup/tuning (HSRP, VRRP, GLBP ...)
 - No matching of STP/HSRP priority
 - No asymmetric flooding
 - No L2/L3 multicast topology inconsistencies
 - No Trunking Configuration Required
- L2 Port Edge features still apply:
 - Spanning Tree Portfast
 - Spanning Tree BPDU Guard
 - Port Security, DHCP Snooping, DAI, IPSG
 - Storm Control

© 2021 Cisco and/or its affiliates. All rights reserved. Cisco Public

TECCRS-2001

Routed access advantages

Simplified network recovery

- Routed access network recovery is dependent on L3 re-route
- Upstream traffic restoration:
 ECMP re-route
 - Detect link failure
 - Process SW RIB update
 - Update HW FIB
- Downstream traffic restoration: routing protocol re-route
 - Detect link failure
 - Determine new route
 - Process SW RIB update
 - Update HW FIB

Compare to...

- RPVST+ convergence times dependent on FHRP tuning
- Proper FHRP design and tuning can achieve sub-second times
- EIGRP converges <200 msec
- OSPF converges <200 msec with LSA and SPF tuning

Upstream Recovery: ECMP

Downstream Recovery: Routing Protocol

© 2021 Cisco and/or its affiliates. All rights reserved. Cisco Public

Routing to the Edge Advantages, Yes in the Right Environment

Advantages:

- Ease of implementation, less to get right
 - No matching of STP/HSRP/GLBP priority
 - No L2/L3 Multicast topology inconsistencies
- · Single Control Plane and well known tool set
 - traceroute, show ip route, show ip eigrp neighbor, etc....
- Most Catalysts support L3 Switching today
- EIGRP converges in <200 msec
- OSPF with sub-second tuning converges in <200 msec
- RPVST+ convergence times dependent on GLBP / HSRP tuning

Considerations:

- Do you have any Layer 2 VLAN adjacency requirements between access switches?
- IP addressing—Do you have enough address space and the allocation plan to support a routed access design?

Both L2 and L3 Can Provide Sub-Second Convergence

© 2021 Cisco and/or its affiliates. All rights reserved. Cisco Public

BRKCRS-2031

Why isn't routed access deployed everywhere?

Routed access design constraints

 VLANs don't span across multiple wiring closet switches/switch stacks

Does this impact your requirements?

- IP addressing changes: more DHCP scopes and subnets of smaller sizes increase management and operational complexity
- Deployed access platforms must be able to support routing features

Campus wired LAN design

Option 2: Layer 3 routed access (BRKCRS-3036)

Logical topology—
L3:
everywhere
L2:
edge only

Physical topology: 2 core 2 dist./acc.

- Complexity reduced for Layer 2 (STP, trunks, etc.)
- Elimination of FHRP and associated timer tuning
- Requires more Layer 3 subnet planning; might not support Layer 2 adjacency requirements

Survives device and link failures	~
Easy mitigation of Layer 2 looping concerns	~
Rapid detection/recovery from failures	~
Layer 2 across all access blocks within distribution	
Device-level CLI configuration simplicity	~
Automated network and policy provisioning included	

© 2021 Cisco and/or its affiliates. All rights reserved. Cisco Public

15

Traditional multilayer campus design

16

What if we could do a simplified design?

TECCRS-2001

Standalone (multilayer) versus simplified

STP Loop

СПОО

FHRP Tunings

DIM DP Priority

PIM Tunings

Protocol Dependent Scale

Unicast Flooding

Asymmetric Forwarding

L2 Hardening

Notwork/Systom Redundancy Tradooff

Protocol Dependent Recovery

CAM/ARP Tunings

OSPF LSA/SPF Tuning

Centrel/Management/Forwarding Complexity

Scale-independent Recovery
Network/System Level Redundancy

Hardware Driven Recovery

Increase Unicast Capacity

Increase Multicast Capacity

Simplified Network Topologies

Control-plane Simplicity

Operational Simplicity

L2-L4 Load Sharing

Flat L2 Network

© 2021 Cisco and/or its affiliates. All rights reserved. Cisco Public

TECCRS-2001 1

Unified system architecture

StackWise Virtual (SWV) and Virtual Switching System (VSS)

Simplified Control-Plane

- Single control-plane to manage two physical systems
- Consistent IOS software feature parity as Standalone
- Centralized programming for distributed forwarding

Common Management

- Single virtual system for OOB/in-band management of two physical systems
- Common SNMP MIBs, traps with advanced MIBS
- Single troubleshooting point

TECCRS-2001 18

Campus wired LAN design

Option 3: Layer 2 access with "simplified" distribution (BRKCRS-1500)

Logical topology— L3:

core/dist. L2:

dist./acc.

Physical topology: 2 core dist./acc

2 dist./acc.
© 2021 Cisco and/or its affiliates. All rights reserved. Cisco Public

- Leading campus design for easy configuration and operation when using stacking or similar technology (VSS, StackWise Virtual)
- Flexibility to support Layer 2 services within distribution blocks, without FHRPs.
- Easy to scale and manage

Survives device and link failures	~
Easy mitigation of Layer 2 looping concerns	~
Rapid detection/recovery from failures	~
Layer 2 across all access blocks within distribution	~
Device-level CLI configuration simplicity	~
Automated network and policy provisioning included	

Campus wired LAN design

Option 4: Cisco Software-Defined Access (BRKCRS-1501, many others)

Logical topology— L2/L3: flexible overlays

> **Physical** topology: 2 core

- Uses advantages of a routed access physical design, with Layer 2 capable logical overlay design
- Provisioning and policy automation
- Integrates wireless into the same policy
- Requires automation to simplify configuration

Survives device and link failures	~
Easy mitigation of Layer 2 looping concerns	v
Rapid detection/recovery from failures	v
Layer 2 across all access blocks within distribution	v
Device-level CLI configuration simplicity	
Automated network and policy provisioning included	v

© 2021 Cisco and/or its affiliates. All rights reserved. Cisco Public

Campus wired LAN design options—summary

What we are trying to avoid!

No hierarchy

Multiple single points of failure

Hard to troubleshoot

Poor performance

Access layer attributes

- Ethernet network access
 - Wired 10/100/1000(802.3z)/mGig(802.3bz)
 - Supports Wireless LAN 802.11a/b/g/n/ac/ax access APs
- Simplified and flexible design
 - Layer 2 edge for applications that require spanned vlans
 - Avoid Spanning Tree loops for resiliency
- Policy enforcement point
 - Secure network and applications from malicious attacks
 - Packet marking for QoS
- Advanced Technologies support
 - Deliver PoE services: 802.3af(PoE), 802.3at(PoE+), and Cisco Universal POE (UPOE)
 - 60 watts per port
 - QoS enforcement to protect multimedia applications

Access layer design

Uniform deployment in the network

 A common deployment method is used for all access layer devices in the design

- Whether they are located in the headquarters or at a remote site.
- A single interface configuration is used for a standalone computer, an IP phone, or an IP phone with an attached computer.
- The LAN access layer is configured as a Layer 2
 - All Layer 3 services provided by directly connected distribution layer switch or router.

Multilayer Network Design

Layer 2 Access with Layer 3 Distribution

- Each access switch has unique VLANs
- No Layer 2 loops
- Layer 3 link between distribution
- No blocked links

- At least some VLANs span multiple access switches
- Layer 2 loops
- Layer 2 and 3 running over link between distribution
- Blocked links

Access layer – hardening the edge

The Cisco Validated Design uses
Catalyst Integrated Security Features to
protect your network from intentional
and unintentional attacks

+ IPv6 RA Guard

- Port security prevents CAM attacks and DHCP Starvation attacks
- DHCP Snooping prevents Rogue DHCP Server attacks
- Dynamic ARP Inspection prevents current ARP attacks
- IP source guard prevents IP/MAC Spoofing
- IPv6 router advertisement guard prevents IPv6 Man-in-the-Middle attacks

Chassis Redundancy at the Access

Recommended for highest availability

- Access switch is the single point of failure in best practices HA design
- Supervisor failure is most common cause of access switch service outages

© 2021 Cisco and/or its affiliates. All rights reserved. Cisco Public

TECCRS-2001 27

Campus LAN distribution layer attributes

- Primary function is access layer aggregation for a building or geographic area.
- Resilient design to reduce failure impact
- Layer 2 boundary for access layer
 - Spanning tree protocol boundary
 - Broadcast packet boundary
 - Provides load balancing to access layer
- Layer 3 features and functions
 - Default IP gateway for L2 access layer
 - IP routing summarization to rest of network
 - Efficient IP multicast
 - Provides load balancing to core layer
- QoS to manage congestion caused by many to few links

BRKCRS-1500

Alternative distribution layer attributes

LAN distribution layer

Collapsed core:

Two tier main campus LAN and WAN core

- LAN access layer aggregation
- Central connect point for all services

Large LAN services block

- Connection point for services
- Drives modular building block design

Two tier remote site:

Aggregates LAN access layer and connects to WAN routers

"How can I simplify my distribution?"

Cisco StackWise Virtual

© 2021 Cisco and/or its affiliates. All rights reserved. Cisco Public

TECCRS-2001 30

Simplified distribution layer design

LAN distribution layer

- Traditional two box distribution layer has many points to manage
- Preferred distribution layer uses a "single box design"
 - Two switches acting as a single logical switch (StackWise Virtual or Virtual Switching System)
 - A multiple member switch stack acting as a single logical switch
- · Simplified design benefits
 - Fewer boxes to manage
 - Simplified configuration
 - Logical hub-and-spoke topology

SWV – StackWise Virtual

Traditional design compared to simplified design

LAN distribution layer

Traditional designs:

- Looped design with spanned VLANs
 - Relies on STP to block loops
 - Reduces available bandwidth
- Loop free design
 - Can increase bandwidth
 - Still relies on FHRP
 - Multiple distribution layer boxes to configure

Preferred Permits both VLAN 30 VLAN 30 VLAN 30 VLAN 20 VLAN 30

Preferred—simplified design:

- EtherChannel resilient links, all links forwarding
- No FHRP single default IP gateway
- Works with VLAN per closet or few VLANs spanned designs
- Logical hub-and-spoke topology
- Reduced dependence on spanning tree
 - keep RPVST+ for edge protection

StackWise Virtual – single-homed connections

- Regardless of system modes (SWV, VSS, or standalone), single-homed connections are not recommended
- Cannot leverage distributed architecture benefits.
- Non-congruent Layer 2 or Layer 3 network design with
 - Centralized network control-plane processing over VSL
 - Asymmetric forwarding plane. Ingress data may traverse over VSL interface and oversubscribe the ports
- Single-point of failure in various faults –
 Link/SFP/module failure, SSO switchover, ISSU etc..
- Cannot be trusted switch for dual active detection purposes

TECCRS-2001

StackWise Virtual—multi-homed physical connections

Redundant network paths per system delivers best architectural approach

However, without MultiChassis Etherchannel on Access Layer uplinks:

- Parallel Layer 2 paths between bridges builds sub-optimal topology :
 - Creates STP loop. Except for root port, all other ports are in blocking mode
 - Slow network convergence
- Parallel Layer 3 doubles control-plane processing load :
 - ACTIVE switch needs to handle control plane load of local and remote-chassis interfaces
 - · Multiple unicast and multicast neighbor adjacencies
 - Redundant routing and forwarding topologies

© 2021 Cisco and/or its affiliates. All rights reserved. Cisco Public

TECCRS-2001 3

StackWise Virtual— Multichassis EtherChannel

Multichassis EtherChannel (MEC) enables Distributed link bundling into single logical L2/L3 Interface

- MEC enables:
 - Simplified STP loop-free network topology
 - Consistent L3 control-plane and network design as traditional standalone system
 - Deterministic sub-second network recovery
- MECs can be deployed in two modes
 - Layer 2 or Layer 3

TECCRS-2001

StackWise Virtual – simplified STP topology

- StackWise Virtual simplifies STP
 it does not eliminate STP. Never disable STP.
- Multiple parallel Layer 2 network path builds STP loop network
- StackWise Virtual with MEC builds single loop-free network to utilize all available links.
- Distributed EtherChannel minimizes STP complexities compared to standalone distribution design
- STP toolkit should be deployed to safe-guard multilayer network

Distribution layer IP unicast routing – EIGRP

LAN distribution layer

EIGRP was chosen for... simplicity, scalability, and flexibility

- Named mode configuration
- Tie EIGRP router-id to loopback 0 for max stability
- Enable all routed links to be passive by default
- Enable EIGRP for address space
- Each distribution is a stub network

Single logical distribution layer design

- Uses stateful switchover (SSO) and non-stop forwarding (NSF)
- SSO provides sub-second failover to redundant supervisor

NSF maintains packet forwarding while control plane recovers

NSF aware

- Nothing to enable.
- •Only need IOS version that supports NSF for EIGRP

NSF capable

- ·Works on dual supervisor system
- •Signals peer of SSO and to delay adjacency timeout
- •Once control plane recovers, re-establishes peering

Distribution layer IP unicast routing – OSPF

LAN distribution layer

OSPF is available for...

compatibility

- Tie OSPF router-id to loopback 0 for max stability
- Enable all routed links to be passive by default
- Enable OSPF for address space
- Each distribution is a stub area and ABR

```
router ospf [process]
router-id [ip address of loopback 0]
nsf
area [area number] stub no-summary
passive-interface default
network [network] [inv. mask] area [area #]
network [network] [inverse mask] area 0
```

Single logical distribution layer design

- Uses stateful switchover (SSO) and non-stop forwarding (NSF)
- SSO provides sub-second failover to redundant supervisor

NSF maintains packet forwarding while control plane recovers

NSF aware

- Nothing to enable.
- Only need IOS version that supports NSF for OSPF

NSF capable

- Works on dual supervisor system
- Signals peer of SSO and to delay adjacency timeout
- Once control plane recovers, re-establishes peering

SWV/VSS: connecting distribution to access layer

Resilient connectivity

- Use EtherChannel for link resiliency and load sharing
- With SWV/VSS, use multi-chassis EtherChannel and home to each switch

Alternatively...
 With StackWise distribution layer, home EtherChannel uplinks to multiple switches in stack

Layer 2 connectivity to access layer

LAN distribution layer

- Configure Layer 2
 - With hub-and-spoke design, no STP loops, still enable RPVST+
 - Configure VLANs servicing access layer
 - Set distribution layer to be STP root for access layer VLANs
- Configure EtherChannel member interfaces
 - Uses LACP for EtherChannel protocol
 - For Layer 2 EtherChannel, configure physical interfaces prior to logical interface
 - Apply egress QoS macro (if not using Application Policy or EasyQoS)
- Configure 802.1Q trunk on EtherChannel logical port (port-channel) interface

```
vlan 10,20,30
spanning-tree vlan 1-4094 root primary
Interface range gigabit 1/1/1, gigabit 2/1/1
 macro apply EgressQoS
 channel-protocol lacp
 channel-group 10 mode active
interface port-channel 10
  switchport trunk encapsulation dot1q
  switchport trunk allowed 10,20,30
  switchport trunk native vlan 999
  switchport mode trunk
```

Layer 3 connectivity for access layer

LAN distribution layer

- Configure Layer 3 for access layer VLANs
 - Configure a VLAN interface(SVI) for every access layer VLAN
 - SVI is the IP default gateway for the access layer hosts in the VLAN
- Configure ip-helper address on each SVI
 - IP helper forwards DHCP requests from hosts in the VLAN to the DHCP server
 - IP helper-address points to the DHCP server for the VLAN
 - If more than one DHCP server, you can list multiple ip-helper commands
- Configure ip pim sparse-mode
 - Enables IP multicast packets to flow to hosts on the VLAN

interface vlan [number]
ip address [ip address] [mask]
ip helper-address 10.2.2.1
ip pim sparse-mode

Layer 3 connectivity to core layer – EIGRP routing configuration

LAN distribution layer

 Enable authentication of neighbor routing protocol communication on interface to the core

```
key chain EIGRP-KEY
key 1
key-string [KEY STRING]

!
router eigrp [NAME]
address-family ipv4 unicast autonomous-
system [AS]
af-interface port-channel 20
authentication mode md5
authentication key-chain EIGRP-KEY
no passive-interface
summary-address [network] [mask]
exit-af-interface
exit-address-family

Enable EIGRP for the core-facing interface
```

As networks grow, IP address summarization is used

- To reduce bandwidth required for routing updates
- To reduce convergence time around a link failure
- Summarize all subnets in the distribution layer to the rest of the network

(disable passive-interface)

Summary

Layer 3 connectivity to core layer – OSPF routing configuration

LAN distribution layer

Enable authentication of neighbor routing protocol communication on interface to the core

```
interface Port-channel 20
  ip ospf message-digest-key [key id] md5 [key]
!
router ospf 100
  area 0 authentication message-digest
  area [area number] range [address range] [mask]
  no passive-interface Port-channel 20
```

 Enable OSPF for the core-facing interface (disable passive-interface) As networks grow, IP address summarization is used

- To reduce bandwidth required for routing updates
- To reduce convergence time around a link failure
- The OSPF area range command allows you to summarize all subnets in the distribution layer to the rest of the network

Chassis Redundancy at the Distribution

Recommended

- HSRP doesn't flap on Supervisor SSO switchover
- Reduces the need for sub-second HSRP timers

© 2021 Cisco and/or its affiliates. All rights reserved. Cisco Public

Core layer attributes

LAN core layer

- Primary function is distribution layer aggregation for large or geographically dispersed LAN deployment
- Lowers the complexity and cost of a fully meshed distribution layer

- Must be highly resilient
 no single points of failure in design
- No high touch/high complexity services
 - Avoid constant tuning or configuration changes
- Layer 3 transport
 - No spanning tree convergence or blocking

Do I need a core layer?

Hierarchical network design: Campus wired LAN

Do I really need a core layer?

- It is a question of operational complexity and a question of scale
 - n x (n-1) scaling for redundant distribution layer
 - Routing peers
 - Fiber, line cards, and port counts (\$,€,£)

Hierarchical network design: Campus wired LAN

Do I really need a core layer?

- It is a question of operational complexity and a question of scale
 - n x (n-1) scaling
 - Routing peers
 - Fiber, line cards, and port counts (\$,€,£)
- Capacity planning considerations
 - Easier to track traffic flows from a block to the common core than to 'n' other blocks
- Geographic factors may also influence the design
 - Multi-building interconnections may have fiber limitations

StackWise Virtual-enabled campus core design

- Extend StackWise Virtual architectural benefits to campus core layer network
- SWV-enabled core increases capacity, optimizes network topologies and simplifies system operations
- Key SWV-enabled core best practices :
 - Protect network availability and capacity with NSF/SSO
 - Simplify network topology and routing database with single MEC
 - Leverage self-engineer SWV and MEC capabilities for deterministic network fault detection and recovery

Chassis Redundancy at the Core

Depends on topology

- Redundant topologies with equal cost multipaths (ECMP) provide sub-second convergence
- NSF/SSO provides superior availability in environments with non-redundant paths

Structured campus network design

- Optimize data load-sharing, redundancy design for best application performance
 - Diversify uplink network paths with cross-stack and dual-sup access-layer switches
 - Build distributed and full-mesh network paths between Distribution and Access-layer switches
 Distribution and Access-layer switches
 Distribution and Access-layer switches
 Distribution and Access-layer switches
 Distribution and Access-layer switches

TECCRS-2001

Summary

- Offers hierarchy—each layer has specific role
- Modular topology—building blocks
- Easy to grow, understand, and troubleshoot
- Creates small fault domains— clear demarcations and isolation
- Promotes load balancing and redundancy
- Promotes deterministic traffic patterns
- Incorporates balance of both Layer 2 and Layer 3 technology, leveraging the strength of both
- Utilizes Layer 3 routing for load balancing, fast convergence, scalability, and control

© 2021 Cisco and/or its affiliates, All rights reserved. Cisco Public

BRKCRS-2031 51

References

- Design Zone https://cisco.com/go/cvd/campus
- Cisco Community https://cs.co/en-cvds
- CiscoLive materials
 - Introduction to Campus Wired LAN Deployment Using Cisco Validated Designs https://www.ciscolive.com/c/dam/r/ciscolive/emea/docs/2020/pdf/BRKCRS-1500.pdf
 - Enterprise Campus Design: Multilayer Architectures and Design Principles
 https://www.ciscolive.com/c/dam/r/ciscolive/emea/docs/2020/pdf/BRKCRS-2031.pdf
 - Designing for High Availability Switching and Wireless in Your Campus LAN techtorial (460+ slides) https://www.ciscolive.com/c/dam/r/ciscolive/emea/docs/2019/pdf/TECCRS-2001.pdf

Multilayer campus network design— It is a good solid design, but...

- Utilizes multiple control protocols
 - Spanning tree (802.1w), HSRP / GLBP, EIGRP, OSPF
- Convergence is dependent on multiple factors
 - FHRP 900msec to 9 seconds
 - Spanning tree Up to 50 seconds
- Load balancing
 - · Asymmetric forwarding
 - HSRP / VRRP per subnet

© 2021 Cisco and/or its affiliates, All rights reserved. Cisco Public

- GLBP per host
- Unicast flooding in looped design
- STP, if it breaks badly, has no inherent mechanism to stop the loop

53

TECCRS-2001

illiilli CISCO

Thank you www.cisco.com/go/cvd

